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Abstract. We consider the critical dynamics of a system with ann-component nonconserved order
parameter coupled to a conserved field with long-range diffusion. An exponentσ characterizes
the long-range transport,σ = 2 being the known locally conserved case. With renormalization
group calculations done up to one loop order, several regions are found with different values of
the dynamic exponentz in theσ–n plane. Forn < 4, there are three regimes, I: nonuniversal,σ

dependentz, II: universal withz depending onn and III′: conservation law irrelevant,z being equal
to that in the nonconserved case. The known locally conserved case belongs to regions I and II.

Conservation laws play significant roles in critical dynamics in thermodynamic systems.
The dynamics of such systems has been studied over the last several decades [1–3]. These
conservations, as constraints, generally distinguish the various dynamic universality classes for
a given equilibrium class. For example, in Ising ferromagnets the order parameter may not be
conserved (model A of [2]) although it is for a binary mixture (model B). In antiferromagnets
or binary alloys undergoing an order–disorder transformation, a secondary parameter, the total
magnetization, is conserved (model C) [2,4]. These classes are characterized by the dynamic
exponentz that connects the divergence of time(τ ) and length(ξ) scales near the critical point,
τ ∼ ξ z. For several cases [1, 2, 5] renormalization group (RG) arguments give exact results
for the dynamic exponentz. However, the numerical studies give somewhat different values
which do not always agree with each other [6,7].

Most of the earlier studies assume local conservation of the conserved field, although local
conservation is not a necessary, but sufficient, condition for conservation in general. Recently,
the issue of nonlocal conservation has been addressed in the case of conserved order parameter
(model B) either by relaxing local diffusion or allowing infinite-range transport [8–13]. For
the nonconserved case, numerical simulations have shown that the dynamic exponent can also
depend on the nature of the dynamics [14]. It is therefore important to determine the robustness
of the well known dynamic universality classes.

Allowing long-range diffusion in the Ising model means that the Kawasaki spin exchange
now also takes place with further neighbour spins. The case where the range of the exchange
becomes infinite corresponds to what we shall call ‘global’ conservation. For the conserved
order parameter case, model B, the effect of global conservation seems to be drastic. In fact the
dynamic correlation functions of theq-state Potts model have been shown to be analogous to
those of the Ising model with fixed magnetization and long-range interactions (i.e., essentially
model B with nonlocal conservation) [10]. Dynamics for local and global conservation are
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also expected to be different [13]. For O(n) symmetric order parameter, the conservation
law has been found to be irrelevant for global conserved case (i.e. infinite-range Kawasaki
dynamics) [1,8] and the dynamic exponentz is argued to be the same as that of model A. The
situation is expected to be more subtle when a conserved quantity is coupled to a nonconserved
order parameter, as for example in model C.

In the case of model C, the dynamics of the nonconserved order parameter is slowed
down compared with model A because of its coupling to a scalar nonordering conserved
field. Even though the conserved field is not critical, its coupling to the order parameter
induces long-range correlations. These singular correlations in turn affect the relaxational
dynamics, yieldingzA < zC < zB where the subscript denotes the model name. With local
conservation, model C has several regions in thed–n plane (whered is the spatial dimension
andn the number of components of the order parameter). There are three different regions
corresponding to different values of the exponentz. Aboven = 4, the behaviour is model
A-like with z = 2+cη, i.e., there is correction to O(ε2)†, whereε = 4−d. For 2< n < 4, the
values ofz are 2 + 2α/(nν), andz = 2 +α/ν for n < 2, whereα andν are the specific heat and
the correlation length exponents, respectively. (These values ofz are forα > 0, otherwise one
takesα = 0 andz once again becomeszA.) The early time behaviour of dynamical models
with short-range initial correlations also gives a new exponent [15–18]. Now, the emergence
of the long-range correlation in the conserved field, the hallmark of model C, is an equilibrium
property. Then, are the universal dynamic behaviours, as reflected in thed–n plane, sensitive
to the nature of the dynamics? We study this problem by considering a long-range transport
for the conserved field, a convenient way of interpolation between the local to the global
conservation.

Let us consider the dynamics of ann component order parameter fieldφ coupled to a scalar
noncritical but conserved fieldm which may be the energy density or the magnetization in the
Ising antiferromagnetic case or particle density in the binary alloy case, or annealed mobile
impurities. We allow for subdiffusive or superdiffusive transport of the conserved field. This
means long-range transport for particles or the impurities [19] or long-range exchange of spins
in magnetic systems. The Hamiltonian for model C reads,

H =
∫

ddx [ 1
2rφ

2(x) + 1
2(∇φ(x))2 + ũφ4(x) + γφ2(x)m(x) + 1

2C
−1m2(x)] (1)

where,φ2(x) =∑n
i=1 φ

2
i (x), φ

4(x) = [
∑n

i=1 φ
2
i (x)]

2, r = 0 is the mean-field critical point,
andC > 0 ensures noncriticality ofm.

For purely relaxational dynamics, the equation of motion obeyed byφ is

1

0

∂φα(x, t)

∂t
= − ∂H

∂φα(x, t)
+ ηα(x, t) (2a)

whilem satisfies the following dynamical equation in Fourier space:

P(k)
∂m(k, t)

∂t
= − ∂H

∂m(−k, t) + ζ(k, t) (2b)

with the noise obeying

〈ζ 〉 = 0 〈ηα〉 = 0 (3a)

〈ηα(x, t)ηα′(x′, t ′)〉 = 20δ(x− x′)δ(t − t ′)δα,α′ (3b)

〈ζ(k, t)ζ(k′, t ′)〉 = 2(P (k))−1δ(k + k′)δ(t − t ′). (3c)

† The equilibrium exponentsα, ν andη are obtained from the scaling of the specific heat (∼ |r|−α), correlation length
(∼ |r|−ν ), and correlation function (∼ |x|−(d−2+η) at r = 0) respectively, wherer is the deviation from a critical
point.
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For model C with local conservation one chooses,P(k) = 1/(λk2). Here we use the general
form [8]

P(k) =
[

1

λσ kσ
+

1

λ0

]
. (3d)

For conservation to hold one only needs to strictly satisfy the continuity equation. For
local conservation, the additional assumption is that the current is determined by thelocal
change in the chemical potential (this is the case whenσ = 2 and Fick’s law is obeyed, i.e.,
j (x) ∝ ∇µ(x), wherej is the current density andµ(x) is the chemical potential in the particle
picture). When the conservation is nonlocal, Fick’s law is no longer valid. This is analogous
to the invalidity of Ohm’s law for diffusing electrons following Levy flight instead of nearest-
neighbour hopping [20]. In the long-range diffusion case, instead of Fick’s law, one can have
a more general constitutive equationj (x) ∝ ∫ κ(x−x′)∇µ(x′) dx′ (which gives back Fick’s
law for κ = δ(x− x′)). This for a power law decay ofκ(x) on Fourier transformation gives
equation (2b) with equation (3d). We further include the momentum independent term, a
kinetic coefficient,λ0 which is generated by the RG itself. A value ofσ 6= 2 simulates the
nonlocality. The only constraint onσ to ensure conservation isσ > 0. The limitσ → 0+ is
the case corresponding to global conservation.

We use the momentum shell RG method where the Fourier componentsφk(t) for the hard
modes3/b < k < 3 are eliminated and the scale changesk = k/b andt = bzt are made.
We eventually set3 = 1. The long-distance long-time results are obtained from the flow of
the renormalized parameters. The static fixed points (at one loop) of this model are easily
obtained(ε = 4− d) [5] as follows:

r∗ = 1

2

n + 2

n + 8
ε (4a)

u∗ = ε

4Kd(n + 8)
(4b)

(hereu = ũ− 1
2γ

2C, andKd = 21−dπ−d/20(d/2)).

(γ 2C)∗ = α̃

2nνKd
(4c)

and eitherγ ∗ = 0 or

α̃/ν = (4− n)ε/(n + 8) γ ∗ 6= 0. (4d)

α̃ is the exponent of the temperature dependence of the largest term in the specific heat, i.e.,
α̃ = α if α > 0 andα̃ = 0 otherwise (α is the specific heat exponent). Forn > 4, γ ∗ = 0 is
the only fixed point. In general,γ ∗ = 0 is the fixed point forn > nc wherenc also has anε
expansion.

Considering the various vertex functions, the renormalization equation for the transport
and kinetic coefficients can be obtained [5]. The RG transformation being analytic cannot
renormalize the singular terms ofP(k), as in the local case. However, the transport coefficient
generates (and renormalizes) the kinetic coefficient,λ0, and also renormalizes the kinetic
coefficient of the order parameter. Defining the dimensionless parameterµσ = 0C/λσ , the
recursion relations at the static fixed point of equation (4c) can be written as (choosing thin
shellsb = 1 + δl with δl→ 0)

∂0−1

∂l
= 0−1

[
−z + 2 +

2α̃/νn

(1 +µ−1)

]
(5a)

∂λ−1
0

∂l
= λ−1

0

(
−z + α̃/ν +

2nγ 2λ0Kd

0

)
(5b)
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∂µσ

∂l
= µσ

[
σ − 2 + α̃/ν − 2α̃/νn

1 +µ−1

]
. (5c)

Hereµ = µσ +µ0, withµ0 = 0C
λ0

. The above one-loop contributions in the dynamic quantities
come from theγ vertex. (It maybe noted that we have excludedη asη = 0 to first order inε.
This is not crucial as there is a cancellation in model C in higher-order terms [2,5].)

The dynamic exponentz is chosen to keep0 scale invariant. Equation (5a) then gives

z = 2 +
2α̃/νn

(1 +µ−1)
. (6)

The fixed point ofµ0 is obtained from equations (5b) and (4c)

µ∗0 =
α̃/ν

2(z− α̃/ν) .

The fixed points ofµσ are therefore 0,∞ or a nonzero finite value given by

µ∗0 +µ∗σ =
σ − 2 + α̃/ν

2− σ + α̃
ν

2−n
n

. (7)

Stability of fixed points and exponents.Let us analyse the stability of the fixed points for the
different values ofσ .

Above n = 4, γ ∗ = 0 is the only fixed point and therefore the conserved field gets
decoupled in the long lengthscale limit. This is nothing but the model A fixed point where
the ordering and nonordering fields are no longer coupled and thereforez = zA. To recover
zA = 2 + cη one needs to go to higher loops, where theu vertex starts contributing.

µσ = 0 is the fixed point valid forσ < 2− α/ν and the exponentz = 2 + O(ε2) for all n.
At this fixed point the conservation of the coupling field simply becomes irrelevant. Therefore,
one again recovers the model A exponentz = zA, althoughγ ∗ 6= 0.

We note that asµ∗σ cannot be negative and̃α ∼ O(ε), (7) will give a physical fixed point
only if n < 2/(1 + p) wherep = (σ − 2)/(α̃/ν) andp > −1. For 4> n > 2/(1 + p),
p > −1,µσ = ∞ will be the stable fixed point. The latter givesn = 4 atp = −0.5, so for
−1< p < −0.5, we find that a nonzero finite fixed point forµ∗σ is always stable. In particular,
for σ = 2, we get back the results of [2]:z = 2 +α̃/ν for n < 2,z = 2 + 2α̃/nν for 2< n < 4
andz = 2 + O(ε2) for n > 4.

Thus we have the following regions in theσ − n plane:
(I) z = σ + α̃/ν. Forσ = 2 +pα̃/ν, n < 2/(1 +p); p > −1.
(II) z = 2 + 2α̃/nν. Forσ = 2 +pα̃/ν, 4> n > 2/(1 +p); p > − 1

2.
(III) z = 2 + O(ε2), γ ∗ = 0. For allσ, n > 4.
(III ′) z = 2 + O(ε2), γ ∗ 6= 0. Forσ < 2− α/ν (i.e.,p = −1), n < 4.
These are shown schematically in figure 1. We may add that there are discontinuities of

z only at the boundariesσ = 2− α̃/ν andn = 4. The model C like regions forσ = 2 are
in regions I and II with nothing special for theσ = 2 line. The value ofz is also continuous
across the boundary of regions I and II. Of the two regions, I is nonuniversal with aσ -dependent
dynamic exponentz = σ + α̃/ν while II is robust and independent ofσ . In region II, z is
dependent onn explicitly while in region I,n dependence is only through the equilibrium
exponents. As one crosses theσ = 2 line, region II extends towards smaller values ofn for
σ > 2 and the opposite happens forσ < 2 where it vanishes atn = 4, σ = 2− α̃/2ν and
region I survives as long asσ > 2− α̃/ν.

The generalσ case, in addition, allows for a new regime where the conservation law
becomes irrelevant even though the coupling survives(γ 6= 0) in the long lengthscale limit
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Figure 1. Regions corresponding to different values ofz are shown forp = σ−2
α̃/ν

andn. The flow
diagrams in theµσ–µ0 plane are also shown. The flow is towards a finite nonzero value ofµσ in
region I, towardsµσ →∞ in region II andµσ = 0 in region III′.

and induces long-range correlations in equilibrium. The global conservation case belongs to
this class.

Since the nonrenormalizability ofλσ is valid to all orders, we expect, as in the local model
C, the dynamic exponentz, as obtained here, for regions I and II to beexact. The above
analysis is best ford close to 4 as we have done calculations up to O(ε) only. Ford close to 4,
in fact, region I exists for values ofσ > 2 andσ < 2 and is very close to 2 only asα ∼ O(ε).
Continuing with this result in lower dimensions, one expects region I to exist over a larger
range ofσ(> 2) so that the line separating regions I and II in the positive half of theσ − 2
axis in figure 1 goes higher up for lower dimensions. However, the line separating regions II
and III (or III′ and III) in figure 1 is shifted towards lower values ofn for lower dimensions as
α becomes negative at a critical value ofn = nc wherenc also has anε expansion. (Figure 1
has been drawn ford close to 4.) In thed–n plane therefore, region I is, in general, depleted
for a value ofσ higher than 2. This depletion is maximum ford = 4. Forσ < 2− α̃/ν, only
regions III or III′ survive withz = zA for all d.

Some of our results are in contrast with the long-range diffusion in model B, wherez is
explicitly dependent onσ , as long as the conservation is relevant. The dynamical exponent is,
in general, expected to increase for a system with constraint, and thereforez > zA. However,
global conservation (i.e.,σ → 0+) becomes irrelevant and one recoversz = zA in this
limit [8,11,12]. This is the case forσ < σc = zA−2+η = O(ε2) for model B. In model C, we
find region III′, where conservation is irrelevant, to be significantly larger withσc = 2− α̃/ν.
Even when the conservation is relevant, we find a strongly universal regime, region II, where
the conservation slows down the dynamics but the nature of the dynamics is irrelevant (σ

independence).
It is possible to implement this long-range transport in a simulation. The infinite range

would correspond toσ → 0+, while any otherσ can be implemented by choosing the two
spins to be flipped, in the Kawasaki dynamics, at a distancel with probabilityP(l) ∼ l−(r+σ)
for largel. However, it is fairly easy to identify the irrelevance of the conservation in model B
numerically when the model A exponent is recovered, aszA andzB are easily distinguishable
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even with a moderate level of precision in calculations. For model C, very high-precision
simulations are required to verify our RG based scenario as the model C exponents in region
I and II are different from that of model A by a much lesser margin.

To summarize our results, we find the effect of long-range diffusion in model C with an
n-component order parameter to be highly significant. Characterizing the long-range diffusion
by an exponentσ > 0, several regimes with different dynamical exponentsz are obtained in
theσ–n plane. Forn < 4, a region with aσ -dependentz is found to exist as well as a region
with strong universality wherez is independent ofσ . Most remarkable is the existence of a
region forσ lesser than a critical value where the coupling with the field survives in the large
lengthscale limit but the conservation becomes irrelevant andz = zA. Such a region is also
present in model B with a nonlocally conserved order parameter, although for a much smaller
range ofσ . Forn > 4, the coupling with the field is irrelevant andz = zA as expected. The
known results for the locally conserved model C are recovered withσ = 2.
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